您好、欢迎来到现金彩票网!
当前位置:全民彩票app下载 > 感知机 >

neural network theory SimonHaykin(神经网络原理 SimonHaykin

发布时间:2019-06-10 18:45 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  神经网络是计算智能和机器学习研究的最活跃的分支之一。本书全面系统地介绍神经网络的基本概念,系统理论和实际应用。

  本书包含四个组成部分:导论,监督学习,无监督学习,神经网络动力学模型。导论部分介绍神经元模型、神经网络结构和机器学习的基本概念和理论。监督学习讨论感知机学习规则,有监督的Hebb学习,学习算法,反向传播算法及其变形,RBF网络,正规化网络、支持向量机以及委员会机器。无监督学习包括主分量分析,自组织特征映射模型的竞争学习形式,无监督学习的信息理论,植根于统计力学的随机学习机器,最后是与动态规划相关的增强式学习。神经网络动力学模型研究由短期记忆和分层前馈网络构成的动态系统,反馈非线性动态系统性的稳定性和联想记忆,以及另一类非线性动态驱动的递归网络系统。

  本书注重对数学分析方法和性能优化的读者讨论,强调神经网络在模式识别,信号处理和控制系统等实际工程问题中的应用。书中包含大量例题和习题,并配有13个基于MATLAB软件的计算机实验程序。

http://diystuff.net/ganzhiji/491.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有